首页> 外文OA文献 >Lower-dimensional invariant tori for perturbations of a class of non-convex Hamiltonian functions
【2h】

Lower-dimensional invariant tori for perturbations of a class of non-convex Hamiltonian functions

机译:一类非凸哈密顿函数摄动的低维不变环

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a class of quasi-integrable Hamiltonian systems obtained by adding to a non-convex Hamiltonian function of an integrable system a perturbation depending only on the angle variables. We focus on a resonant maximal torus of the unperturbed system, foliated into a family of lower-dimensional tori of codimension 1, invariant under a quasi-periodic flow with rotation vector satisfying some mild Diophantine condition. We show that at least one lower-dimensional torus with that rotation vector always exists also for the perturbed system. The proof is based on multiscale analysis and resummation procedures of divergent series. A crucial role is played by suitable symmetries and cancellations, ultimately due to the Hamiltonian structure of the system.
机译:我们考虑一类拟可积的哈密顿系统,该系统是通过将可扰系统仅依赖于角度变量添加到非凸哈密顿函数中而获得的。我们关注于一个无扰动系统的共振最大圆环,它变成了余维1的一维低维圆环的族,在准周期流中具有一定的温和丢丢番素条件的旋转矢量不变。我们表明,对于受扰动的系统,也始终存在至少一个具有该旋转矢量的低维环面。证明基于发散级数的多尺度分析和恢复程序。适当的对称性和抵消起着至关重要的作用,最终归因于系统的哈密顿结构。

著录项

  • 作者

    CORSI L; FEOLA R; GENTILE G;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号